Organische Synthesen mit Übergangsmetallkomplexen, 29¹⁾

2,3-Dihydroazet-Komplexe und 2-Azetidinone durch Templatsynthese mit Carbenkomplexen, Isocyaniden und Inaminen

Rudolf Aumann**, Eberhard Kuckert*, Carl Krüger^b, Richard Goddard^b und Klaus Angermund^b

Organisch-Chemisches Institut der Universität Münster^{*}, Orleáns-Ring 23, D-4400 Münster

Max-Planck-Institut für Kohlenforschung^b, Lembkestraße 5, D-4330 Mülheim/Ruhr

Eingegangen am 3. Februar 1988

Durch Drei-Komponenten-Reaktion von Carbenkomplexen $L_nM = C(OEt)C_6H_5$ [$L_nM = (CO)_5Cr$, (CO)_5W] mit Isocyaniden $R^1 - NC$ ($R^1 = CH_3$, $c-C_6H_{11}$) und dem Inamin $Et_2NC \equiv CCH_3$ erhält man ein Azetidinon 6 und als ungewöhnliches Cyclisierungsprodukt den 2,3-Dihydroazet- (1-Azetin-) 5a bzw. Spito-2,3-dihydroazet-Komplex 5b. Verbindung 5a wurde kristallographisch charakterisiert.

Organic Syntheses via Transition Metal Complexes, 29¹⁾. – 2,3-Dihydroazete Complexes and 2-Azetidinones by Template Synthesis with Carbene Complexes, Isocyanides, and Inamines

By a three-component reaction of carbene complexes $L_nM = C(OEt)C_6H_5$ [$L_nM = (CO)_5Cr$, (CO)₅W] with isocyanides $R^1 - NC$ ($R^1 = CH_3$, $c-C_6H_{11}$) and the inamine $Et_2NC \equiv CCH_3$, an azetidinone 6 and a 2,3-dihydroazete (1-azetine) 5a or spiro-2,3-dihydroazete complex 5b are obtained resulting from an unusual cyclisation. 5a was characterised by an X-ray analysis.

Im Rahmen von Untersuchungen über die Verwendung von Übergangsmetallkomplexen als "nicht-klassische" Synthesebausteine fanden wir ein einfaches Verfahren zur Darstellung von Keteniminkomplexen aus Carbenkomplexen und Isocyaniden²⁾. Durch Komplexierung werden die für (metallfreie) Ketenimine typischen Reaktionsmuster grundlegend verändert. Die Reaktivitäten der Keteniminkomplexe lassen sich durch fünf Parameter (R, R¹, X, M, L) über einen weiten Bereich graduell abstimmen. Die Verbindungen können in situ umgesetzt werden. So gelangt man durch Drei-Komponenten-Reaktionen von Carbenkomplexen mit Isocyaniden und z. B. Alkinen zu einer Fülle sehr unterschiedlicher, ungewöhnlicher Verknüpfungsmuster dieser Bausteine. Aus Carben-Wolframkomplexen und 1-Alkinen er-

hielten wir Azetidinylidenkomplexe und aus diesen β -Lactame³⁾.

Anders als 1-Alkine liefert das (elektronenreiche) Inamin 4 mit 1 und 2 überraschend 2,3-Dihydroazet- (Azetin)-Komplexe 5. Der Vierring besteht in diesem Fall aus vier Atomen der ursprünglichen Ketenimineinheit. Eine α -CH-Bindung wird auf die C \equiv C-Einheit von 4 übertragen. Daneben bildet sich ein "normales" [2 + 2]-Cycloaddukt, das beim Chromatographieren zum Azetidinon 6^{4} hydrolysiert.

5 und 6 entstehen möglicherweise über die gleiche Zwischenstufe 7 durch nucleophile Addition von 4 am zentralen Kohlenstoff des Keteniminliganden von 3. Diese Regiochemie war für Keteniminkomplexe bisher unbekannt. An Keteniminliganden addieren "harte" Nucleophile Nu - H (Nu

Chem. Bcr. 121, 1475-1478 (1988) © VCH Verlagsgesellschaft mbH, D-6940 Weinheim, 1988 0009-2940/88/0808-1475 \$ 02.50/0

= RO, R₂N) ausschließlich am terminalen Kohlenstoff⁵⁾. Dabei bilden sich Aminocarbenkomplexe. Die Addition eines "weichen" Nucleophils 4 erfolgt am zentralen Kohlenstoff, was sonst nur für metallfreie Ketenimine gilt⁴⁾. Wir kennen Beispiele für metallinduzierte Übertragungen von α -H-Atomen in Keteniminkomplexen⁶⁾, so daß die Bildung eines 2-Azabutadienkomplexes 8 aus 7 plausibel wäre. 5 ist durch einen "Push-pull"-Effekt stabilisiert, der auch eine Cyclisierung von 8 zu 5 begünstigt. Bei 2,3-Dihydroazet (1-Azetin) hingegen wird die Retroreaktion beobachtet⁷⁾. Zwanglos läßt sich die Bildung von 6 über die Zwischenstufen 7 und 9 mit anschließender Hydrolyse erklären.

Das ¹³C-NMR-Signal der N=C-Einheit des Azetinringes von 5 liegt mit 190.70 bzw. 194.60 ppm in einem für 1-Azetine typischen Bereich⁷). Die Struktur von 5a wurde durch eine Röntgenstrukturanalyse gesichert (Abb. 1, Tabellen 1 und 2). Der 1-Azetinligand ist über den Ringstickstoff koordiniert. Der Cr-N-Abstand (213.8(5) pm] ist ähnlich wie in $Cr(CO)_5(C_5H_5N)$ [220.4(3) pm⁹] und weist somit keinen Doppelbindungscharakter auf [vgl. (Cyclopentadienvl)(diphenylamido)iodonitrosylchrom, Cr = N: 189.4(3) pm¹⁰]. Wie im metallfreien 1-Azetin^{8a)} ist der 1-Azetin-Ring planar (maximale Abweichung ± 3.5 pm). C7–C8 im Ring ist mit 159.9(9) pm etwas aufgeweitet was auf die unterschiedlichen Substituenten an beiden C-Atomen zurückzuführen sein mag. Der N1-C8-Abstand [131.9(8) pm) ist nicht signifikant länger als im freien 1-Azetin (N=C: 130.7 pm).

Abb. 1. Molekülstruktur von 5a

Obwohl N1-C8-C9-C11 fast in einer Ebene liegen (Torsionswinkel – 172(1)°], bedeutet dies nicht eine Delokalisation beider Doppelbindungen N1=C8 und C9=C11, da C8-C9 mit 141.7 pm für eine Bindung zwischen zwei sp²-Kohlenstoffen normal ist. C6-C7 hingegen ist wie im freien 1-Azetin signifikant aufgeweitet. Die Bindungsabstände und -winkel des Cr(CO)₅-Restes entsprechen typischen Werten. C14-C15 ist mit 119 pm ungewöhnlich kurz, was sich durch die hohe thermische Bewegung von C15 erklären läßt (U_{eq} 25 pm²). In der Packung der Moleküle werden keine außergewöhnlichen intermolekularen Abstände beobachtet.

Tab. 1. Atomkoordinaten und gemittelte Parameter der Temperaturfaktoren für **5a** $U_{eq} = 1/3 \sum_{i}^{2} \sum_{j}^{j} U_{ij} a_{i}^{*} a_{j}^{*} \bar{a}_{i} \cdot \bar{a}_{j}$

Atom	x	У	Z	Ueq
Cr	0.6136(1)	0.6522(1)	0.3703(1)	0.049
01	0.6074(6)	0.6535(6)	0.6369(6)	0.108
02	0.6047(5)	0.3858(5)	0.2537(5)	0.087
03	0.3046(5)	0.5391(5)	0.2164(5)	0.087
04	0.5872(5)	0.6460(5)	0.0877(5)	0.092
05	0.5653(7)	0.8942(6)	0.4471(8)	0.134
06	1.1582(4)	0.8898(4)	0.6107(5)	0.065
Nl	0.8335(5)	0.7434(4)	0.4870(5)	0.046
N2	1.1905(7)	0./225(6)	0.9007(6)	0.088
CI	0.61/4(7)	0.6552(6)	0.5419(8)	0.065
02	0.6145(7)	0.4865(7)	0.3000(7)	0.060
03	0.4245(7)	0.5821(6)	0.2/3/(/)	0.061
05	0.5908(8)	0.8065(7)	0.4211(8)	0.079
C6	0.8964(6)	0.8499(5)	0.4740(6)	0.055
C7	1.0348(6)	0.8795(5)	0.6154(6)	0.055
C8	0.9499(6)	0.7578(5)	0,5968(6)	0.042
Č9	0.9868(6)	0.6875(5)	0.6730(6)	0.051
C10	0.8906(7)	0.5597(6)	0.6167(7)	0.073
C11	1.1183(7)	0.7494(5)	0.7953(7)	0.059
C12	1.131(1)	0.625(1)	0,9303(8)	0.127
C13	1.166(1)	0.518(1)	0.877(1)	0.143
C14	1.340(1)	0.809(1)	1.009(1)	0.178
C15	1.372(2)	0.909(2)	1.104(2)	0.254
C16	1.1540(9)	0.7889(7)	0.4964(9)	0.098
C17	1.283(1)	0.7974(9)	0.511(1)	0.146
C18	1.0662(7)	0.9927(5)	0.7538(6)	0.055
C19	0.9649(8)	1.0039(7)	0.7875(9)	0.110
C20	0.991(1)	1.1028(9)	0.915(1)	0.143
C21	1.118(1)	1.1900(8)	1.0030(9)	0.105
022	1.21/8(9)	1.1829(/)	0.9/29(8)	0.090
C23	1,1945(/)	T.0012(0)	0.84/3(/)	0.00/

Tab. 2. Bindungsabstände (Å) und Bindungswinkel (°) für 5a

	_		_			
Cr	-	ิ่งม		2	.138(5)	Cr - Cl = 1.904(9)
Cr	-	· C2		1	.921(8)	Cr - C3 = 1.831(8)
Cr	-	- C4		1	.900(9)	Cr - C5 = 1.880(9)
01	-	- C1		1	.13 (1)	02 - C2 = 1.13(1)
03	_	C3		1	.16 (1)	04 - C4 = 1.15 (1)
05	_	C5		1	.14 (1)	06 - C7 = 1.404(9)
06	_	C16		 1	.42 (1)	$NI = C6 \qquad I 473(8)$
N 1		- C8		1	319(8)	$N^2 = C^{11} + 1.33(1)$
N2	_	C12		1	49 (1)	$N_2 = C14 + 1.52 (1)$
<u>C6</u>	_			1	·····	$n_2 = c_1 q = 1.52 (1)$
C7		018		1	50 (I)	$C_{1}^{0} = C_{2}^{0} = 1.339(9)$
<u> </u>	_			1	• 54 (1) 50 (1)	
010				1	.50 (1)	$C_{9} = C_{11} + 1.39 (1)$
016		017		1	•44 (2)	C14 = C15 = 1.19 (3)
C10	_			1	. 38 (2)	C18 = C19 = 1.36 (1)
018	-	023		1	·36 (1)	C19 - C20 = 1.40 (2)
C20	-	CZI		1	.34 (2)	$C_{21} - C_{22} = 1.32 (2)$
022	-	023		1	•41 (1)	
05	-	cr	-	C4	89.6(4)	C5 - Cr - C3 = 87.0(4)
05	-	Cr	-	02	1/3.3(4)	$c_5 = c_7 = c_1 = 89.1(4)$
05	-	Cr a	~	N I	90.1(3)	C4 = Cr = C3 = 89.3(3)
04	-	Cr	~	C2	88.2(3)	C4 = Cr = C1 = 177.6(3)
C4	-	Cr	-	NI	90.9(3)	$C_3 = Cr = C_2 = 86.7(3)$
C3	-	cr	-	CI	88.5(3)	$C_3 - C_7 - N_1 = 177.0(3)$
C2	-	Cr	-	C1	92.8(3)	$C2 - Cr - N1 \qquad 96.3(3)$
Cl	-	Cr	-	Nl	91.2(3)	C16 - 06 - C7 116.4(6)
C8	-	Nl	-	C6	94.4(5)	C8 - N1 - Cr = 143.4(4)
C6	-	NI	-	Cr	120.8(4)	Cl4 - N2 - Cl2 ll8.7(8)
C14	-	N2	-	C11	116.3(8)	Cl2 - N2 - Cll 124.5(7)
01	-	C1	-	Cr	174.0(7)	02 - C2 - Cr = 174.9(7)
03	-	C3		Cr	178.0(7)	04 - C4 - Cr = 176.0(7)
05	-	C5	-	Cr	174.1(8)	C7 - C6 - N1 87.6(5)
C18	-	C7	-	C8	112.4(6)	C18 - C7 - C6 113.7(6)
C18	-	C7	-	06	107.5(6)	C8 - C7 - C6 82.2(5)
C8	-	C7	-	06	120.0(5)	C6 - C7 - O6 119.6(6)
C9	~	C8	-	C7	131.5(6)	C9 - C8 - N1 133.2(6)
C7	-	C8	-	Nl	95.2(5)	C11 - C9 - C10 127.2(6)
C11	-	C9		C8	111.9(6)	Cl0 - C9 - C8 120.9(6)
C9	-	C11	-	N2	132.5(7)	Cl3 - Cl2 - N2 110.1(9)
C15	-	C14	-	N2	123 (1)	C17 - C16 - O6 112.9(9)
C23	-	C18	-	C19	117.9(8)	C23 - C18 - C7 122.3(7)
C19	-	C18	-	C7	119.8(7)	C20 - C19 - C18 121.5(9)
C21	-	C20	-	C19	119 (1)	C22 - C21 - C20 121 (1)
C23	-	C22	-	C21	120.5(8)	C22 - C23 - C18 119.9(7)

Diese Arbeit wurde von der Deutschen Forschungsgemeinschaft und vom Fonds der Chemischen Industrie unterstützt.

Experimenteller Teil

Allgemeine Versuchsbedingungen wie in Lit.¹⁾ – Die Bestimmung der Beugungsintensitäten von **5a** erfolgte an einem in einer Lindemann-Kapillare unter Argon fixierten gelben Kristall auf einem automatisierten Diffraktometer (Enraf Nonius CAD 4) bei Raumtemperatur. Kristalldaten sowie Angaben zur Strukturanalyse sind in Tab. 3 zusammengefaßt. Die Lösung des Phasenproblems erfolgte nach direkten Methoden¹¹, die anschließende anisotrope Verfeinerung, in die Wasserstoffatome auf berechneten Positionen nicht aufgenommen wurden, konvergierte bei R = 0.078. Bei der Verfeinerung wurden $\Sigma w(F_0 - F_c)^2$ mit $w = 1/\sigma^2(F_o)$ zum Minimum gebracht.

Tab. 3. Daten zur Kristallstrukturanalyse von 5a*)

C ₂₃ H ₂₆ O ₆ N ₂ Cr	Z = 2		
Kristallfarbe: gelb	Kristallgröße: 0.11 x 0.47 x 0.50 mm		
$M_{r} = 478.5$	$\lambda = 0.71069$		
triklin	Raumgruppe: PI		
a = 11.295(4) Å	R = 0.078		
b = 12.334(4) Å	$R_{W} = 0.075$		
c = 11.259(3) Å	Gesamtzahl Reflexe: 5645 (<u>+</u> h, <u>+</u> k,+1)		
$\propto = 110.42(3)^{\circ}$	beobachtete Reflexe: 2947 (I>2d(I))		
$\beta = 113.97(3)^{\circ}$	verfeinerte Parameter: 289		
δ = 99.32(3) ^ο	۵/d: 0.62		
$V = 1256.0 \text{A}^3$	Restelektronendichte: 0.62 eA ⁻³		
$D_{\rm ber.} = 1.27 \ {\rm gcm}^{-3}$	μ (Mo-K _a) = 4.79 cm ⁻¹		

*) Weitere Einzelheiten zur Kristallstrukturanalyse können beim Fachinformationszentrum Energie Physik Mathematik GmbH, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD 52941, des Autors und des Zeitschriftenzitates angefordert werden.

Pentacarbonyl (2-ethoxy-N-methyl-2-phenylethenimin-N) chrom-(0) (3a): Zu 326 mg (1.00 mmol) 1a in 10 ml Petrolether tropft man langsam und unter gutem Rühren bei 0 °C 41 mg (1.00 mmol) 2a in 2 ml Petrolether. Dabei verfärbt sich die Lösung gelblich-grün. Bei -15 °C kristallisieren 270 mg (74%) 3a. - ¹H-NMR (CDCl₃): $\delta = 7.3 - 7.0$ (5H, m, C₆H₅), 3.55 und 3.17 (je 1H, OCH₂), 2.79 (3H, s, NCH₃), 1.08 (3II, t, CH₃ OEt). - ¹³C-NMR (CDCl₃): $\delta = 231.89$ (s, N=C=C), 220.87 (s, CO trans), 214.28 (4C, s, CO cis), 129.69 (s, C-1 C₆H₅); 129.12, 128.66, 124.84 (je d, 2:1:2, C₆H₅); 114.61 (s, N=C=C), 66.65 (t, OCH₂), 56.76 (q, NCH₃), 14.76 (q, CH₃ OEt).

Pentacarbonyl {4-[(E)-2-(diethylamino)-1-methylethenyl]-3ethoxy-2,3-dihydro-3-phenylazet-N'}chrom(0) (5a) und 4-(α -Ethoxybenzyliden)-1,3-dimethyl-2-azetidinon (6): 367 mg (1.00 mmol) 3a in 5 ml Benzol werden bei 25 °C unter Rühren langsam mit 111 mg (1.00 mmol) 1-(Diethylamino)-1-propin versetzt. Die Lösung erwärmt sich dabei. Nach 30 min wird eingeengt und an Kieselgel chromatographiert (Säule 30 × 2 cm, Petrolether/Ether 4:1). Die erste gelbe Fraktion liefert 61 mg (13%) 5a, Schmp. 99 °C. Mit $R_f =$ 0.2 werden weiterhin 23 mg (10%) 6 als farbloses Öl eluiert.

5a: ¹H-NMR (CDCl₃): $\delta = 7.37 - 7.35$ (5H, m, C₆H₅), 6.53 (1H, s, HC=), 4.18 und 3.58 (je 1H, d, J = 10.1 Hz, CH₂), 3.64-3.50

(2H, m, diastereotope OCH₂), 3.18 (4H, m, diastereotope NCH₂), 2.09 (3H, s, =C-CH₃), 1.32 (3H, t, CH₃ OEt), 1.04 (6H, t, CH₃ NEt₂). - ¹³C-NMR (CDCl₃): δ = 221.00 (s, CO *trans*), 215.27 (4C, CO *cis*), 194.60 (s, C=N), 149.39 (d, =CHNEt₂), 140.19 (s, C-1 C₆H₅); 128.52, 127.45, 124.22 [je d, 2:1:2, C-(2-6) C₆H₅], 94.41 und 85.60 [je s, =C und C(OEt)Ph], 71.67 (t, NCH₂ Ring), 59.73 (t, OCH₂), 47.41 (t, 2C, NCH₂ NEt₂), 15.44 (q, CH₃ OEt), 14.68 (q, 2C, CH₃ NEt₂), 10.25 (q, CH₃). - IR (KBr): 1607 (cm⁻¹) (s), 1540 (s), 1425 (m), 1327 (m); IR (*n*-Hexan): vC \equiv O 2060 cm⁻¹ (42%), 1922(100), 1918 (sh), 1903(92). - MS (70 eV): *m/z* (%) = 478 (M⁹, 6), 422 (4, M - 2CO), 366 (31, M - 4CO), 338 (36, M - 5CO), 286 (4, L), 257 (24, L -- Et), 209 (39, L - C₆H₅) 190 (36, CrN \equiv CC(CH₃) = CHNEt₂), 169(57), 138 (100, 190 - Cr), 123 (86, 138 - CH₃), 105(90), 98(38), 52(48).

6: ¹H-NMR (CDCl₃): $\delta = 7.37$ (5H, m, C₆H₅), 3.69 (1 H, dq, J = 0.9 und 7.4 Hz), 3.56 (2H, m, diastereotope OCH₂), 2.59 (3H, d, J = 0.9 Hz, NCH₃), 1.48 (3H, d, J = 7.4 Hz, CCH₃), 1.19 (3H, t, CII₃ Et). $-^{13}$ C-NMR (CDCl₃): $\delta = 170.70$ (s, C=O); 133.04, 131.02, 130.45 (je s, C-1 und C=C); 128.75, 127.88, 127.78 (je d, 2:1:2, C₆H₅), 65.29 (t, OCH₂), 49.63 (d, CHMe), 27.72 (q, NCH₃), 14.84 und 12.07 (je q, CH₃ Et und CHMe). - IR (KBr): 2980 cm⁻¹ (s), 1795 (s), 1695 (s). - MS (70 eV): m/z (%) = 231 (M[⊕], 40), 202(28), 174 (6, M - H₃CN=C=O), 159(6), 146(10), 105(100), 77(32).

 $C_{14}H_{17}NO_2$ (231.3) Ber. C 72.70 H 7.41 N 6.06 Gef. C 72.89 H 7.61 N 6.22

Pentacarbonyl {4-[(E)-2-(diethylamino)-1-methylethenyl]-3ethoxy-3-phenylspiro[azet-2(3H),1'-cyclohexan]N'}wolfram(0) (5b): 0.50 g (0.88 mmol) $3b^{3}$ in 5 ml Benzol werden wie oben mit 0.080 g (0.88 mmol) 4 umgesetzt. Nach 30 min wird eingedampft (20 °C, 15 Torr) und an Kieselgel chromatographiert (Säule 40 \times 2 cm, Petrolether/Ether 5:1). Nach einem Vorlauf mit wenig W(CO)₆ wurden in der ersten gelben Fraktion 140 mg 5b (23%), Schmp. 80°C, aufgefangen. $- {}^{1}$ H-NMR (CDCl₃): $\delta = 7.34 - 7.20$ $(5 H, m, C_6H_5)$, 6.89 (1 H, s, = CH), 3.61 und 3.50 (je 1 H, m, diastereotope OCH₂), 3.27 (4H, m, diastereotope CH₂ NEt₂), 1.72 (3H, s, CCH₃), 1.21 (3H, t, CH₃ OEt), 1.16 (6H, t, CH₃ NEt₂), 1.94-1.10 $(10H, m, CH_2 Cy)$. - ¹³C-NMR (CDCl₃): $\delta = 201.99$ (s, CO trans), 198.79 (4C, s, CO *cis*), 190.70 (s, C = N), 147.51 (d, $= CHNEt_2$), 137.35 (s, C-1 C₆H₅): 127.75, 127.40 (je d, 3:2, C₆H₅); 95.17 und 87.91 [je s, C(OEt)Ph und = CCH_3], 79.35 (s, Spiro-C), 61.27 (t, OCH₂), 46.74 (2C, t, CH₂ NEt₂); 34.89, 32.26, 24.86, 23.54, 22.40 (je t, CH₂ Cy); 15.79 und 14.09 (je q, = CCH₃ und CH₃ OEt), 14.93 $(2C, q, CH_3 \text{ NEt}_2)$. – IR (*n*-Hexan): $vC \equiv O 2060 \text{ cm}^{-1} (30\%)$, 1976(20), 1956(20), 1918(90), 1914(100), 1903(70). -- MS (70 eV): m/z (%) 678 (M^{\oplus}, 4), 622 (10, M - 2CO), 354 (46, L), 325 (71, L -Et), 254(24), 228(30), 105(100), 77(46).

 $\begin{array}{c} C_{28}H_{34}N_2O_6W~(678.5) & \mbox{Ber.}~C~49.57~H~5.05~N~4.13\\ & \mbox{Gef.}~C~49.60~H~5.35~N~3.89 \end{array}$

CAS-Registry-Nummern

1a: 26160-57-6 / 2a: 593-75-9 / 3a: 113778-98-6 / 3b: 109531-10-4 / 4: 4231-35-0 / 5a: 113778-99-7 / 5b: 113779-00-3 / 6a: 113779-01-4

³⁾ R. Aumann, E. Kuckert, Chem. Ber. 120 (1987) 1939.

¹⁾ 28. Mitteilung: R. Aumann, H. Heinen, Chem. Ber. **121** (1988) 1085.

²⁾ Übersichtsartikel: R. Aumann, Organometallics in Organic Synthesis (H. tom Dieck, A. de Meijere, Eds.), p. 69-84, Springer Verlag, Berlin, Heidelberg 1987.

- ⁴⁾ L. Ghosez, C. de Perez, Angew. Chem. **83** (1971) 171; Angew. Chem. Int. Ed. Engl. **10** (1971) 184.
- Chem. Int. Ed. Engl. 10 (1971) 104.
 ⁵⁾ R. Aumann, H. Heinen, E. Kuckert, Angew. Chem. 97 (1985) 960; Angew. Chem. Int. Ed. Engl. 24 (1985) 978.
 ⁶⁾ R. Aumann, H. Heinen, Chem. Ber. 119 (1986) 3801; R. Aumann, H. Heinen, C. Krüger, Chem. Ber. 120 (1987) 1287.
 ⁷⁾ I. C. Grillemin, I. M. Denia, A. Lablach, Combiner, I. Am. Chem.
- ⁷⁾ J. C. Guillemin, J. M. Denis, A. Lablache-Combier, J. Am. Chem.
- Soc. 103 (1981) 468.
 ^{8) 8a)} A. Gieren, K. Burger, W. Thenn, Z. Naturforsch., Teil B, 29 (1974) 399. ^{8b)} 1-Azetine (2,3-dihydroazetes) review: J. A.

Moore, The Chemistry of Heterocyclic Compounds (A. Hassner Ed.), vol. 42/2, p. 1-218, Interscience, J. Wiley & Sons 1983.
⁹ F. A. Cotton, D. J. Darensbourg, A. Fang, B. W. S. Kolthammer, D. Reed, J. L. Thompson, Inorg. Chem. 20 (1981) 4090.
¹⁰ G. A. Sim, D. I. Woodhouse, G. R. Knox, J. Chem. Soc., Dalton Trene 1970, 92

- Trans. 1979, 83.
- ¹¹⁾ G. M. Sheldrick, Crystallographic Computing 3 (G. M. Sheldrick, C. Krüger, R. Goddard, Eds.), p. 175–189, Oxford University Press, Öxford 1985.

[21/88]